新しいものを表示

「工学でも生物界でもきわめて多種多様なシステムがフィードバックの図式に従っている。そうしてこういう現象を取扱うために、サイバネティクスと呼ばれる新しい学問が、ノバート・ウィーナーによって導入されたことはよく知られている。この理論は、人工機械でも生物体でも社会的システムにおいてフィードバックの性質をもった機構が目的論的あるいは目的指向的ふるまいの基礎になっていることを示そうとするものである」40頁→

スレッドを表示

「生物内自然において物理学法則が破られると考えられていた多くの例は実際には存在しない、というよりむしろ物理学理論の一般化とともに消えうせることがわかった…一般的にいえば、開放システムの概念は非物理学的なレベルに使うことができる」38頁

スレッドを表示

「もう一つ無生物的自然と生物的自然との間で一見して対照をなすのは、ときにロード・ケルヴィンの崩壊(degradation)とダーウィンの進化(evolution)の間のまっこうからの矛盾と称せられたもの、つまり物理学における消尽の法則と生物学における進化の法則との矛盾である。…熱力学の第二法則…ところがこれと反対に生物の世界で見られることは、胚発生でも進化でも、より高い秩序と異質性とオーガニゼーションへと向かう推移である。しかし開放システムの理論をもとにすれば、エントロピーと進化のみかけの矛盾もなくなる。…閉鎖システム中のエントロピー変化はつねに正である。つまり秩序はたえず崩される。ところが開放システム中では、不可逆過程によるエントロピー生成ばかりでなく、負と称してもよいようなエントロピーのとりこみがある。自由エネルギーの高い複雑な分子をとりこんでいる生きた生物体中でおこっているのはこれである。つまり自らを定常状態に保っている生物システムは、エントロピー増加を避けることができるし、高度の秩序とオーガニゼーションの状態へ向かって進むことさえできる」37-8頁

スレッドを表示

「等結果性(equifinality)の原理…閉鎖システムでは、最終状態はかならず初期条件によって一義的に決められてしまう。…これが開放システムだとそうならない。開放システムの場合にはいろいろ異なった初期条件と異なった方法からも同一の最終状態に達する。これがいわゆる等結果性であり、生物学的調節の現象にとって重要な意味を持っている。生物学史に親しい人ならば、ドイツの生物学者ドリーシュを生気論に導いたのがまさしく等結果性であったことを思いだされるだろう。生気論とは、生命現象は自然科学の言葉を用いては説明できないとする教義であった。ドリーシュの主張は胚の初期発生についての実験にもとづくものであった。完全な卵からでも、半分に割った卵のそれぞれからでも、完全な卵を二つくっつけたものからでも、同じ最終結果、すなわちウニの正常な個体が一つできるのである。同じことは人間を含む他の多くの種にもあてはまり、一卵性双生児というのは一つの卵が割れた結果生まれる。等結果性はドリーシュによれば、物理学の法則にそむくものであり、正常な生物体を作りあげるという目標をめざして過程を支配する霊魂まがいの生気要因がなければ不可能だという」37頁

「エンテレキー」ですな😅

スレッドを表示

「システムのうちには、その本性と定義そのものからして閉鎖システムではないシステムもある。生きた生命体はどれも本質的に開放システムである。生物体は成分の流入と流出、生成と分解の中で自己を維持しており、生きているかぎりけっして化学的、動力学的平衡の状態にはなく、それとは違ういわゆる定常状態にある。これこそ代謝と呼ばれるあの生命の根本現象、すなわち生きている細胞内での化学過程の本質である。この場合にはどうなるか? 明らかに物理学の伝統的なやり方は、開放システムでありかつ定常状態にあるものとしての生物体には原理的に適用できない」36頁

スレッドを表示

「微分方程式は物理的科学、生物的科学、経済的科学、またおそらく行動科学においても、広い範囲を覆えるものなので、この事実は、微分方程式を、一般化されたシステムの研究へのよいアプローチの一手段としている」35-6頁

スレッドを表示

「下記に一般システム理論のおもなねらいを示す。
 (1) 自然および社会諸科学に統合をめざす一般的な動きがある。
 (2) このような統合の中心はシステムの一般理論の中にあるように見える。
 (3) このような理論は非物理学分野の科学で精密な理論をめざすとき重要な手段になりそうだ。
 (4) 個々の科学の世界を『縦に』貫く統一原理を展開することにより、この理論は私たちを科学の統一の目標にさらに近づけてくれる。
 (5) これは科学教育できわめて必要とされる統合へと導く」35頁

スレッドを表示

「いろいろの異なる分野に形式的に同一の、つまり同形(isomorphic)の法則が見いだされる。多くの場合、『システム』の一定のクラス(類)あるいは部分クラスに対して、そこに関与する実体の性質が何であるかにかかわらず、同形の法則がなりたつ。一定の型のシステムであれば、システムの特殊な性質と関与する要素の如何にかかわらずあてはまる一般的なシステム法則が存在するようにみえるのだ。
 このような考察から一般システム理論と呼ぶ科学の新しい分科が要請されてくる。その主題は、成分要素とそれらの間の関係あるいは『力』の本性が何であってもそれにかかわらず、『システム』全般についてなりたつ原理を設定することである。
 それゆえ一般システム理論は、これまでは空疎でぼんやりとしてなかば形而上学的な概念と考えられてきた『全体性』に関する一般的科学である。仕上がったあかつきの形は論理ー数学的な一個の学問となり、それ自体は純形式的なものだが個々の経験科学に応用できるものとなるだろう。このものが『オーガナイズされた全体』を扱う科学に対してもつ意味は、確率論が『偶然事象』を扱う科学に対してもつ意味と同じものであるだろう」34-5頁

スレッドを表示

「現代科学のいろいろな分野で同じような一般的概念と観点が進化してきた。かつての科学では、観察される現象を、たがいに独立に調べることのできる要素的単位の相互作用に還元して説明しようとした。ところがこんにちの科学には、多少漠然と『全体性』と名づけられるようなものに関する諸概念が現われている。つまりそれはオーガニゼーションの問題、局部的な事象に分解できない現象、各部分を個々に離したときと高次の構造(configuration)をもたせたときとで部分の行動に差があることに明示される動的な相互作用等々であり、要するに、ばらばらに各部分を研究したのでは理解できないさまざまな秩序をもつ『システム』の概念である。研究対象が無生物か生物か社会現象かにかかわらず、科学のあらゆる分野にこのような性質をもつ概念と問題が現われてきた。それら個々の科学の発達はたがいに無関係で、たがいのことをほとんど知らず、かつ異なった事実と、抵触しあう考え方のもとになされたのだから、この一致はなおさら驚くべきである。これらの発展は科学研究での態度と考えとに一般的な変化が生じたことを示している」34頁

スレッドを表示

「システム理論の発展において問題となるのは、周知の数式を応用するというようなことではない。むしろ、新しくて部分的には解決にほど遠い問題が課されてくるのだ。…古典的な考え方は、大きな数だが有限数の要素間あるいは過程間の相互作用を扱う場合にはうまくいかない。ここに、全体性とかオーガニゼーションなどの概念によって大づかみに指示される新しい数学的思考法を要求する諸問題が生じてくる」32頁

スレッドを表示

「こんにち基本的な問題となっているのはオーガナイズされている複雑性の問題だ。オーガニゼーション、全体性、目標指向性、目的論、分化などの概念は伝統的物理学とは異質のものである。けれども、これらの概念は生物科学、行動科学、社会科学のいたるところでちょいちょい顔をだし、じっさい、生物体や社会的集団を扱うのになくてはならないものである。つまり現代科学に課せられた根本問題の一つはオーガニゼーションに関する一般理論なのだ。一般システム理論は、原理的にいって、そのような概念に正確な規定を与えることのできるもの、また、うまい場合には、それらを定量的な解析にもちこむことのできるはずのものである」32頁

スレッドを表示

「一般的なシステム特性が存在することの当然の結果の一つは、異なった分野に構造上の類似や同形性のみられることである。本質的にひどくかけへだたったものについても、そのふるまいを支配する原理に対応がある。…こうした対応は、そこで問題にされるものがいくつかの点で『システム』とみなせる、すなわち、交互作用しあう要素の複合体とみなせる、という事実によっている。…『システム』に関係しているという事実があれば、問題とする現象において条件が対応しあっているときには、一般原則さらには特殊法則にさえも対応がみられることになるのだ」30-1頁

スレッドを表示

「現代科学にはもう一つ重要な問題がある。最近まで、自然法則の集成としての精密科学というと、ほとんどそれは理論物理学に等しかった。物理学以外の分野で精密な法則を記述しようとする少数の試みはほとんど認められなかった。けれども生物科学、行動科学および社会科学からの衝撃とそれらにおける進歩は、私たちの概念図式を拡張して物理学の適用では十分でなかったり適用が不可能な分野で一連の法則をたてさせることを必要としているように見える。
…生きた生物体は本質的に開放システムである。つまり、環境とのあいだで物質を交換しあうシステムである。伝統的な物理学と物理化学は閉鎖システムを扱うもので、近年やっと理論が拡張されて不可逆過程と開放システムと非平衡の状態も含まれてきた。けれども、もし開放システムのモデルを、たとえば動物の生長現象に適用しようとすると、自動的に理論を一般化して物理学的単位にではなく生物学的単位に使えるようにしなければならない。いいかえれば、私たちは一般化されたシステムを扱うことになる。同じことが過去数年の間に関心を呼びおこしたサイバネティクスや情報理論の分野にも当てはまる」30頁

スレッドを表示

「生物学でも、機械論的なとらえ方では、生命現象を原子論的な実体と部分過程に分解してしまうのが目標であった。生きた生命体は細胞へと分解され、生物体の活動は生理学的な過程へ、さらに最終的には物理化学的な過程へと分解され、また生物の行動は無条件反射と条件反射へ、さらに遺伝の基礎は個別の粒子である遺伝子へ分解されるというふうであった。しかしこれと反対に現代生物学では有機体論的な考えが基礎となっている。部分や過程をばらばらに研究するだけでなく、それらを統一するオーガニゼーションと秩序のうちに見いだされる決定的諸問題を解くことも必要である。そうしたオーガニゼーションや秩序は、部分間の動的な相互作用の結果であり、部分を切り離して研究するときと全体の中に置いてみるときとで、それらのふるまいを異なるものにしている。…社会科学でも、社会を社会学的原子である個体の総和とみなす考え方、たとえば『経済人』のモデルが、社会や経済や国家をその部分の上に立つ全体と考える傾向に変わってきた。このことは計画経済や国家の神格化といった大きな問題をも意味するが、また新しい考え方を反映するものでもある」28-9頁

スレッドを表示

「『システム・アプローチ』といわれるものの中にも機械論的な傾向やモデルもあれば有機体論的傾向やモデルもあって『分析』、『線形(循環を含む)因果性』、『オートマトン』によるか、あるいは『全体性』、『相互作用』、『動力学』によるかのどちらか(あるいは両者のちがいを明確にする他のどんな言葉を使ってもよいのだが)によってシステムを攻略しようとしているのだ。これらのモデルはたがいに他を排除するものではなく、同一の現象に対し異なったモデルによるアプローチをすることさえありうるのだが(たとえば『サイバネティクス的な』概念と『反応速度論的な』概念…)、その場合どちらの見方がより一班的また基本的であるかを問うことはできる」22頁

スレッドを表示

「日常言語によるモデルもシステム理論の中ではしかるべき位置を占める。システム的な考えはたとえ数学的に定式化されなくても価値を失わず、数学的説明としてでなくむしろ『その後の手引きとなる考え』として残るものである。たとえば私たちは社会学において満足できるシステム概念をもっていないかもしれない。しかし社会的実体が社会的原子の総和ではなくシステムであるとか、あるいは歴史というものは文明と称せられるシステム…からなりたっていてシステムに一般的な諸原理に従うものであるだとかの見通しだけでも、これらの分野の方向転換を意味することになる」22頁

スレッドを表示

「平衡、ホメオスタシス、適合、等々の概念とモデルはシステムの維持に対しては適当でも、変化、分化、進化、負エントロピー、生じにくい状態の出現、創造性、緊張の作りだし、自己認識、創発、等々の現象に対しては不充分であった。じっさいキャノンもホメオスタシスとは別に、後者の性質の現象を含んだ『ヘテロスタシス』というものを認めたとき、このことに気づいていたのだ」21頁

スレッドを表示

「サイバネティクスは、技術ばかりでなく基礎科学にも衝撃をおよぼし、具体的な現象に対するモデルを与えるとともに目的論的現象——以前はタブーであったもの——を科学によって認めてもらえる問題の領域にもちこんだ。しかしそれはいっさいを包括するような説明もしくは大きな『世界観』を生みだすことはなく、機械論的見解と機械の理論にとってかわるのではなしに、それの拡張であった」20頁

けっこう批判的😅

スレッドを表示

「<サイバネティクス> これは制御システムの理論であって、システムと環境の間あるいはシステム内部での通信(情報の運搬)、また環境と関連してのシステムの働きの制御(フィードバック)に基礎をおいている。このモデルは広い応用範囲があるが『システム理論』全般と同一視すべきではなくて……生物学その他の基礎科学で、サイバネティック・モデルは制御機構の形式的構造を、たとえばブロック図と流れ図によって記述しようとする。このようにすると制御構造は、たとえその実際の機構が未知であり記述されておらず、システムが入力と出力のみで定義されているような『暗箱(black box)』であるときでも、認知することができる」19頁

スレッドを表示

「システムと呼ばれるようなもの、すなわち『たがいに相互作用をしている』部分からなるものではこれらの条件は満たされない。こうしたものの記述の原型は一組の連立微分方程式で…それは一般の場合には非線形である。システムもしくは『オーガナイズされた複雑性』…は『強い相互作用』(Rapoport, 1966)あるいは『無視できない』相互作用(Simon, 1965)、すなわち非線形の相互作用の存在によって区別される。システム理論の方法論的な問題は、それゆえ、古典科学の分析的ー加算的な問題とくらべてずっと一般的な性質をもっている」16頁

スレッドを表示
古いものを表示
Fedibird

様々な目的に使える、日本の汎用マストドンサーバーです。安定した利用環境と、多数の独自機能を提供しています。